

Mark Scheme (Results)

Summer 2013

GCE Statistics S2 (6684/01)

Edex cel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036999
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

•

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question Number	Scheme	Marks		
1(a)	(5,5,5) or (1,5,5) or (2,5,5)	B1		
	(5,5,5) (5,5,1) (5,1,5) (1,5,5) (5,5,2) (5,2,5) (2,5,5) or (5,5,5) and (5,5,1) (×3) and (5,5,2) (×3)	B1 (2)		
1(b)	$\left(\frac{3}{10}\right)^3 = \frac{27}{1000} = 0.027$	B1		
	(5,5,1) $3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 = \frac{135}{1000} \text{ or } \frac{27}{200} = 0.135$	M1		
	(5,5,2) $3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{54}{1000} = \frac{27}{500} = 0.054$			
	$P(M=5) = \left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{27}{125} = 0.216 \text{ oe}$	A1A1 (4)		
1(c)	$P(M=1) = (0.5)^3 + 3(0.5)^2(0.2) + 3(0.5)^2(0.3)$	M1		
	= 0.5	A1		
	$P(M=2) = \left(\frac{1}{5}\right)^3 + 3 \times \left(\frac{1}{5}\right)^2 \times \frac{1}{2} + 3 \times \left(\frac{1}{5}\right)^2 \times \frac{3}{10} + 6 \times \frac{1}{2} \times \frac{1}{5} \times \frac{3}{10}$	M1		
	$= 0.284 \text{ or } \frac{71}{250} \text{ oe}$	A1		
	m 1 2 5	A1 (5)		
	$P(M = m) \qquad 0.5 \qquad 0.284 \qquad 0.216$	Total 11 marks		
	Notes			
1(a)	1 st B1 for two of the given triples, any order 2 nd B1 for all 7 cases. no incorrect extras			
1(b)	B1 $\left(\frac{3}{10}\right)^3$ or 0.027 oe. This can be a single term in a summation			
	M1 either "3" $\times \frac{1}{2} \times \left(\frac{3}{10}\right)^2$ or "3" $\times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe. May omit the	$3 \times$ or have		
	another positive integer in place of the 3. These may be seen term in a summation	as a single		
	A1 $\left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe			
	A1 0.216 oe			
1(c)	1^{st} M1 correct calculation for $P(M = 1)$ or $P(M = 2)$, working must be and not implied by a correct answer.	shown		
	$1^{\text{st}} A1$ either $P(M = 1)$ or $P(M = 2)$ correct	1 1 22 2		
	2^{nd} M1 correct calculation for both $P(M = 1)$ and $P(M = 2)$, or their p adding up to 1, but do not allow probabilities of 0.5, 0.2 and 0.3	robabilities		
	2^{nd} A1 both $P(M=1)$ and $P(M=2)$ correct	منه مله منس		
	3 rd A1dep on both M marks awarded. All three values written down v correct probabilities. They must be in part (c) but they do not need to			
	table. NB A fully correct table with no working will get M0 A0 M1 A1 A0.			
Question Number	Scheme Marks			

2(a)	$P(X = 1) = 0.25e^{-0.25} = 0.1947$	awrt 0.195	M1A1
()			(2)
2(b)	<i>X</i> ∼Po(1.5)		B1
	$P(X > 2) = 1 - P(X \le 2)$		M1
	= 1 - 0.8088		
	= 0.1912	awrt 0.191	A1
			(3)
2(c)	$[\lambda = 300 \times 0.25 = 75]$		
	<i>X</i> ∼N(75,75)		B1 B1
	$P(X < 90) = P(X \le \frac{89.5 - 75}{\sqrt{75}})$		M1M1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$= P(Z \le 1.6743)$		
	= awrt 0.953 or 0.952		A1
			(5)
			Total 10 marks
2()	Notes Notes		
2(a)	M1 0.25e ^{-0.25} o.e		
2 (b)	B1 stating or using Po(1.5) M1 stating or using 1 - P($X \le 2$)		
2(c)	1 st B1 for normal approximation and corn	rect mean	
2(0)	$2^{\text{nd}} \text{ B1 Var}(X) = 75 \text{ or sd} = \sqrt{75} \text{ or awrt}$		ect in standardisation
	formula)	o.oo (may oc given ii coiic	et in standardisation
	1 st M1 using either 89.5 or 88.5		
	2 nd M1 Standardising using their mean a	and their sd, using [89.5, 88	8.5 or 89] and for
	finding correct area		
	NB use of Poisson gives an answer of	0.9498 and gains no mai	rks

Question Number	Scheme		Marks
3(a)	$X \sim Po(7)$ $P(X > 10) = 1 - P(X \le 10)$ = 1 - 0.9015 = 0.0985	awrt 0.0985	B1 M1 A1 (3)
3(b)	$P(X > d) < 0.05$ Or $P(X \ge d) < 0.05$ $P(X \le d) > 0.95$ $P(X \le d) > 0.95$ $P(X \le 11) = 0.9467$ $P(X \le 12) = 0.9467$ $P(X \le 12) = 0.9730$ $P(X < 13) = 0.9730$ Least number of games =12 Least number of games 13		M1 A1 A1 (3)
3(c)	H ₀ : $\lambda = 1$, $(\mu = 28)$ H ₁ : $\lambda > 1(\mu > 28)$ $Y \sim \text{Po}(28)$ approximated by N(28,28) $P(Y \ge 36) = P(Z \ge \frac{35.5 - 28}{\sqrt{28}})$ $= P(Z \ge 1.42)$ = 0.0778 or $1.42 < 1.64490.0778 > 0.05 so do not reject H0/not signif There is no evidence that the average rate of increased.$		B1 B1
	Notes		THAT KS
3(a) 3(b)	B1 stating or using Po(7) M1 stating or using 1 - P($X \le 10$) M1 using or writing P($X > d$) < 0.05 or P($X < d$) > 0.95 (condone \ge instead of $>$		
	and \leq instead of $<$) May be implied by correct answer. Different letters may be used. 1 st A1 P($X \leq 12$)/P($X < 13$) = awrt 0.973 or P($X \leq 11$)/P($X < 12$) = awrt 0.947 May be implied by a correct answer 2 nd A1 12 or 13 NB An answer of 12/13 on its own with no working gains M1A1A1		
3(c)	 1st B1 both hypotheses correct using λ or μ, and 1 or 28 2nd B1 for writing or using a normal approximation with correct mean and Var (may be given if sd correct in standardisation formula) 1st M1 for use of a continuity correction 35.5 or 36.5 or x ± 0.5 2nd M1 Standardising using their mean and their sd. If they have not written down a mean and sd then these need to be correct here to award the mark. They must use [35.5, 36.5, 36, x or x ± 0.5] For CR must have = awrt 1.64 or 1.65 1st A1 awrt 0.0778 or 0.9222 or the statement 1.42 < awrt 1.65/1.64 or CR X ≥ 37.2 / X > 37.2 3rd M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. NB Non contextual contradicting statements gets M0 2nd A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Need the words "rate/average number", "sales" and "increased" oe NB If found P(X = 36) they can get B1B10M0A0M0A0 		
Question Number	Scheme		Marks

4(a)	$E(X) = \frac{5b}{2}$	B1 (1)
4 (b)	$Var(X) = E(X^2) - (E(X))^2$	
	$=\int_{h}^{4b} \frac{x^2}{3h} dx - (\frac{5b}{3})^2$	M1
	5 30 2	M1d
	$= \left[\frac{x^3}{9b}\right]_b^{4b} - \frac{25b^2}{4}$	
	$= \frac{63b^3}{9b} - \frac{25b^2}{4}$	
	$=\frac{3b^2}{4}$	Alcso
	= 4	(3)
4 (c)	Var(3-2X) = 4Var(X)	M1
	$=3b^2$	A1 (2)
4(d)		(2)
		B1B1
	$F(x) = \begin{cases} \frac{x-1}{2} & 1 \le x \le 4 \end{cases}$	(2)
	$F(x) = \begin{cases} 0 & x < 1 \\ \frac{x-1}{3} & 1 \le x \le 4 \\ 1 & x > 4 \end{cases}$	
4(e)	$\frac{x-1}{3} = 0.5 \text{ so } x = 2.5$	B1
	3	(1) Total 9 marks
Alt 4(b)	$Var(X) = \int_{a}^{b} \frac{(x-\bar{x})^2}{b-a} dx$	Total 7 marks
	$= \int_{b}^{4b} \frac{dx}{4x^{2} - 20bx + 25b^{2}} dx$	M1
	$= \int_{b} \frac{dx}{12b} dx$	M1
	$= \left[\frac{\frac{4x^3}{3} - 10bx^2 + 25b^2x}{12b} \right]_{1}^{4b}$	1411
	L J <i>p</i>	
	$=\frac{9b^3}{12b}$	
	$=\frac{3b^2}{4}$	A1cso(3)
	Notes	
4(b)	NB remember the answer is given (AG) so they must show their w	
	$\int_{0}^{1} 1^{st} M1$ for using $\int_{0}^{1} \frac{x^2}{3h} dx$ - (their (a)) ² limits not needed and condone in	missing dx. NB
	need	
	not use the letter x but if they use b instead do not award if they cancel down to $\frac{b}{3}$	
	NB Check they have subtracted (their(a)) ²	
	2^{nd} M1 dependent on previous M being awarded. For some correct integration $x^n \to x^{n+1}$	
	and correct limits substituted at some point. condone 4b ³ instead of (4b) ³ for correct solution with no incorrect working seen.	
4(c)	M1 for writing or using $4Var(X)$	
4(d)	$1^{st} B1$ top and bottom line. Allow use of \leq instead of \leq and \geq $2^{nd} B1$ middle row. Allow use of \leq instead of \leq	instead of >
Question	2 DI Illiadic Ion. Illiow asc of a listeau of s	

Question Number	Scheme	Marks
5(a)	$F(1) = 0, \frac{4}{10} + a + b = 0$	M1
		A1

	2 1	1
	$a = -\frac{3}{5} \text{ or } b = \frac{1}{5}$	
	F(2) = 1, 2 + 2a + b = 1	M1
	Solving gives $a = -\frac{3}{5}$, $b = \frac{1}{5}$	A1
	Alt	(4)
	$F(2) - F(1) = 1, 2 + 2a + b - \frac{4}{10} - a - b = 1$	M1
	$a = -\frac{3}{5}$	A1
	F(2) = 1 or $F(1) = 0$	
		M1
	$2 - \frac{6}{5} + b = 1 \text{ or } \frac{4}{10} - \frac{3}{5} + b = 0$	
	$b=\frac{1}{5}$	A1 (4)
5(b)	Differentiating cdf gives $f(x) = \frac{3}{10}x^2 + \frac{6}{10}x + a$, $1 \le x \le 2$	
		B1 cso
	$=\frac{3}{10}(x^2+2x-2)$	(1)
5(c)	$F(X) \int_{0}^{2} \frac{3}{3} \left(\frac{3}{3} + \frac{2}{3} \frac{2}{3} \right) dx$) (1
	$E(X) = \int_{1}^{2} \frac{3}{10} (x^{3} + 2x^{2} - 2x) dx$	M1
	$= \frac{3}{10} \left[\frac{1}{4} x^4 + \frac{2}{3} x^3 - x^2 \right]_1^2$	M1d A1
	10	A 1
	$=\frac{13}{8}$	A1 (4)
5(d)	F(1.425) = 0.24355, F(1.435) = 0.25227	M1A1
	0.25 lies between F(1.425)and F(1.435) hence result.	A1 (3)
	Notes	Total 12 marks
5(a)	1^{st} M1 using F(1) = 0. Clear attempt to form a linear equation for a and b	L
	1 st A1 either $a = -0.6$ or $b = 0.2$ Previous M must be awarded	1.7
	2^{nd} M1 using F(2) = 1. Clear attempt to form a second linear equation for a 2^{nd} A1 if 1^{st} A1 awarded then both a and b must be correct otherwise award	
	either $a = -0.6$ or $b = 0.2$	
	<u>alt</u> 1 st M1 F(2) - F(1) = 1. Leading to a value for a: 1 st A1 $a = -0.6$	
	2^{nd} M1 using F(2) = 1 or F(1) = 0. Leading to a value for <i>b</i> : 2^{nd} A1 <i>b</i> NB correct values for <i>a</i> and <i>b</i> with no working scores no marks.	p = 0.2
5(b)	B1 They must differentiate and then factorise. cso	
5(c)	1^{st} M1 for clear attempt to use $xf(x)$ with an intention of integrating (Integral sign	
	enough) Ignore limits. Must substitute in $f(x)$ or "their $f(x)$ ".	C
	2 nd M1d dependent on previous M being awarded for some correct integration	on at least
	one correct term with the correct coefficient.	
	1 st A1 for fully correct (possibly unsimplified) integration. Ignore limits	
	2 nd A1 Accept 1.63 and 1.625 or some other exact equivalent	
5(d)	M1 expression showing substitution of 1.425 or 1.435 into $F(x)$ [or into F	
	[or putting their $F(x) = 0.25$ and attempting to solve leading to $x =$] May be either pair of the correct answers as given below for the 1 st A1	implied by
	1st A1 awrt 0.244 and awrt 0.252 [or awrt -0.00645 and awrt 0.00227] [or $x = 1$	= awrt 1 4321
	2^{nd} A1 0.25 lies between F(1.425)and F(1.435) [or change in sign therefore root	
	between] [or "1.432" lies between 1.425 and 1.435 therefore root	
	between]. Statement must be true for their method	1

Question Number	Scheme	Marks
6(a)	<i>X</i> ∼B(20,0.25)	M1
	$P(X \ge 10) = 1 - 0.9861 = 0.0139$	A1
	$P(X \le 1) = 0.0243$	A1

	$(0 \le) X \le 1 \cup 10 \le X (\le 20)$	A1A1	
6(b)	H_0 : $p = 0.25$	(5)	
O(D)	$H_1: p < 0.25$	B1	
	$X \sim B(20,0.25)$		
	$P(X \le 3) = 0.2252$ or CR $X \le 1$	M1A1	
	Insufficient evidence to reject H ₀ , Accept H ₀ , Not significant.	M1d	
	3 does not lie in the Critical region.		
	No evidence that the changes to the process have reduced the	A1cso	
	percentage of defective articles (oe)	(5)	
		(5)	
	NT-4	Total 10 marks	
((-)	Notes Notes	•,,,	
6 (a)	M1 using B(20,0.25) may be implied by a correct CR (allow w	ritten as a	
	probability statement) 1st A1 awrt 0.0139		
	2 nd A1 awrt 0.0243		
		ments	
	3^{rd} A1 $X \le 1$ or $0 \le X \le 1$ or $[0,1]$ or 0,1 or equivalent statements 4^{th} A1 $X \ge 10$ or $10 \le X \le 20$ or $10,11,12,13,14,15,16,17,18,19,20$ or $[10,2]$ or equivalent statements NB These two A marks must be for statements with X (any letter) only – not in		
	probability statements and SC for CR written as $1 \ge X \ge 10$ gets A1 A0		
6(b)	B1 both hypotheses with <i>p</i>		
	1 st M1 using B(20, 0.25) and finding P($X \le 3$) or P($X \ge 4$) may	be implied by a	
	correct CR	_	
	1^{st} A1 0.2252 (allow 0.7748) if not using CR or CR $X \le 1$ or X	< 2	
	2 nd M1dependent on previous M being awarded. A correct statement (do not		
	allow if there are contradicting non contextual statements)		
	Alcso Conclusion must contain the words changes/new proces	-	
	number/percentage oe , and defective articles/defectives . There must be incorrect working seen.		
	mediteet working seen.		

Question Number	Scheme	Marks
7(a)	Distribution $X \sim B(n, 0.1)$	B1
/(a)	Distribution $X \sim D(n, 0.1)$	
7(b)	V D(10.0.1)	
7(b)	Y~B(10,0.1)	B1
	$P(Y \ge 4) \qquad = 1 - P(Y \le 3)$	M1
	= 1 - 0.9872	
	= 0.0128	A1
		(3)
7(c)		
	$0.9^n < 0.05 \text{ or } 1 - (0.9)^n > 0.95$	M1
	n > 28.4	A1
	n=29	A1
	alternative	
	B(28,0.1): $P(0) = 0.0523$	M1
	B(29,0.1): $P(0) = 0.0471$	A1
	n=29	A1cao
		(3)
7 (d)	$C \sim Po(5)$	B1
, (u)		M1
	$P(C > 10) = 1 - P(C \le 10)$	1V1 1
	= 1 - 0.9863	
	=0.0137	A1
		(3)
		Total marks 10
	Notes	
7(a)	B1 for "binomial" or B(
7(b)	B1 writing or using B(10,0.1)	
	M1 writing or using $1 - P(Y \le 3)$	
	A1 awrt 0.0128	
7(c)	M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or s	eeing 0.0523 or
	seeing 0.0471	
	1^{st} A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by	correct answer.
	2^{nd} A1 cao $n = 29$ should not come from incorrect working.	
	NB An answer of 29 on its own with no working gains M1A1A	1
7(d)	B1 writing or using Po(5)	
	M1 writing or using $1 - P(C \le 10)$	
	A1 awrt 0.0137	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA036999 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

